ГлавнаяЛитератураГигиена: Габович Р.Д.; Г. Х. ШахбазянГигиенические основы рационального освещения

Гигиенические основы рационального освещения


Гигиеническое значение освещения. Рациональное освещение необходимо прежде всего для оптимальной функции зрительного анализатора. Известный физик Гельмгольц называл глаз наилучшим даром и чудесным произведением природы. Естественно, что этот дар природы человеку следует беречь, т. е. создавать для глаза такие условия освещения, чтобы увеличить его работоспособность, уменьшись утомляемость и сохранить зрение до глубокой старости. Но поскольку глаз способен адаптироваться даже к плохим условиям освещения высказанное пожелание не всегда выполняется. Результатом является снижение работоспособности, преждевременное утомление глаза, а с течением времени развивается нарушение рефракции (близорукость), ухудшается зрение.

Свет обладает и психофизиологическим действием. .Рациональное освещение положительно сказывается на функциональном состоянии коры большого мозга, улучшает функцию других анализаторов. В целом световой комфорт, улучшая функциональное состояние центральной нервной системы и повышая работоспособность глаза, приводит к повышению производительности и качества труда, отдаляет утомление, способствует уменьшению производственного травматизма. Так, рационализация освещения на одной из шахт Донбасса увеличила производительность труда на 15% и снизила травматизм более чем в 3 раза. Поэтому с полным правом можно сказать, что дорого стоит не хорошее, а плохое освещение (Г. М. Кнорринг).

Изложенное относится как к естественному, так и к искусственному освещению. Но естественное освещение помимо того оказывает тепловое, физиологическое и бактерицидное действие. Поэтому жилые, производственные и общественные здания должны быть обеспечены рациональным дневным освещением.

Искусственное освещение помещений в свою очередь имеет преимущества перед естественным. С его помощью можно создать в любом месте помещения заданную и лабильную в течение дня освещенность. В настоящее время роль искусственного освещения возросла: вторые смены, ночной труд, подземные работы, вечерние домашние занятия, культурный досуг и др. Качество искусственного освещения в жилых и других помещениях во многом определяется гигиеническими знаниями населения.

Показатели, характеризующие освещение. К основным показателям, характеризующим освещение, принадлежат: 1) спектральный состав света (от источника и отраженного), 2) освещенность, 3) яркость (источника света, отражающих поверхностей), 4) равномерность освещения.

Спектральный состав света. Исследования, выполненные во время работ, предъявляющих высокие требования к зрительному анализатору, показали, что наибольшая производительность труда и наименьшая утомляемость глаза бывает при освещении стандартным дневным светом. За стандарт дневного света в светотехнике принят спектр рассеянного света с голубого небосвода, т. е. поступающего в помещение, окна_которого ориентированы на север. При дневном свете наилучшее цветоразличение.


Если размеры рассматриваемых деталей один миллиметр и более, то для зрительной работы примерно одинаково освещение источниками, генерирующими белый дневной свет и желтоватый.

Спектральный состав света (в том числе отраженный от стен) оказывает и психофизиологическое действие. Так, красный, оранжевый и желтый цвета по ассоциации с пламенем, солнцем вызывают ощущение теплоты. Красный цвет возбуждает, желтый— тонизирует, улучшает настроение и работоспособность. Голубой, синий и фиолетовый кажутся холодными. Так, окраска стен горячего цеха в синий цвет создает ощущение прохлады. Голубой цвет — успокаивает, синий и фиолетовый :—угнетают. Зеленый цвет — нейтральный — приятный по ассоциации с зеленой растительностью, он меньше других утомляет зрение. Окраска стен, машин, крышек парт в зеленые тона благоприятно сказывается на самочувствии, работоспособности и зрительной функции глаза.

Окраска стен и потолков в белый цвет издавна считается гигиенической, так как обеспечивает наилучшую освещенность помещения из-за высокого коэффициента отражения 0,8- 0,85. Поверхности, окрашенные в другие цвета, имеют меньший коэффициент отражения: светло-желтый — 0,5—0,6, зеленый, серый—0,3, темно-красный — 0,15, темно-синий — 0,1, черный — 0,01. Но белый цвет (из-за ассоциации со снегом) вызывает ощущение холода, он как бы увеличивает размер помещения, делает его неуютным. Поэтому теперь стены палат в больницах чаще окрашивают в светло-салатовый, светло-желтый и близкие к ним цвета.

Следующий показатель, характеризующий освещение,— освещенность. Освещенностью называют поверхностную плотность светового потока. Единицей освещенности является 1 люкс — освещенность поверхности 1 м2, на которую падает и равномерно распределяется световой поток в один люмен. Люмен — световой поток, который испускается полным излучателем (абсолютно черным телом) при температуре затвердения платины с площади 0,53 мм2. Освещенность обратно пропорциональна квадрату расстояния между источником света и освещаемой поверхностью. Поэтому, чтобы экономно создать высокую освещенность, приближают источник к освещаемой поверхности (местное освещение). Освещенность определяют люксметром. Необходимо подчеркнуть, что шкала люксов обычная, не логарифмическая, как шкала децибел, а зрительное ощущение (видимость) зависит от логарифма освещенности. Из этого следует, что если освещенность возрастает в 2 раза (например, с 30 лк до 60 лк), то видимость усилится не в 2 раза, а в 1 + lg 2, т. е. примерно в 1,3 раза.

Гигиеническое нормирование освещенности сложно, так как она влияет на функцию центральной нервной системы и на функцию глаза. Эксперименты показали, что с увеличением освещенности до 600 лк значительно улучшается функциональное состояние центральной нервной системы; дальнейшее увеличение освещенности до 1200 лк в меньшей мере, но также улучшает ее функцию, освещенность выше 1200 лк почти не оказывает влияния. Таким образом, везде, где работают люди, желательна освещенность порядка 1200 лк, минимум 600 лк. Эти данные подтвердились наблюдениями на производствах (СССР, ФРГ, США) в условиях, когда рабочим предоставлялся свободный выбор освещенности.

Исследовалось также влияние освещенности на зрительную функцию глаза при различной величине рассматриваемых предметов. При этом учитывалось влияние освещенности на разные функции глаза (остроту зрения, контрастную чувствительность, устойчивость ясного видения, быстроту различения и др.), производительность труда и утомляемость глаза. В результате установлены следующие нормативы. Если рассматриваемые детали имеют размер менее 0,1 мм нужна освещенность 400—1500 лк, 0,1—0,3 мм — 300— 1000 лк, 0,3—I мм — 200—500 лк, 1 мм — 10 мм— 100—150 лк, более 10 мм — 50— 100 лк. Нормативы приведены для освещения лампами накаливания. При этих нормативах освещенность достаточна для функции зрения, но в ряде случаев она менее 600 лк, т. е. недостаточна с психофизиологической точки зрения. Поэтому при освещении люминесцентными лампами (поскольку они экономичней) все перечисленные нормы увеличиваются в 2 раза и тогда освещенность приближается к оптимальной и в психофизиологическом отношении.

При письме и чтении (школы, библиотеки, аудитории) освещенность на рабочем месте должна быть не менее 300 (150) лк, в жилых комнатах 75 (30), кухнях 100 (30).

Для характеристики освещения большое значение имеет яркость. Яркость — сила света, излучаемого с единицы поверхности. Фактически при рассматривании предмета мы видим не освещенность, а яркость. Поэтому и следовало бы нормировать не освещенность, а яркость, к чему будут постепенно переходить.

Единица яркости — кандела на квадратный метр (кд/м2) — яркость равномерно светящей плоской поверхности, излучающей в перпендикулярном направлении с каждого квадратного метра силу света, равную одной канделе. Яркость определяют яркомером.

При рациональном освещении в поле зрения человека не должно быть ярких источников света или отражающих поверхностей. Если рассматриваемая поверхность чрезмерно яркая, то это негативно отразится на работе глаза: появляется ощущение зрительного дискомфорта (с 2000 кд/м2), падает производительность зрительной работы (с 5000 кд/м2), вызывает слепимость (с 32 000 кд/м2) и даже болевое ощущение (с 160 000 кд/м2). Оптимальная яркость рабочих поверхностей — несколько сот кд/м2. Допустимая яркость источников освещения, находящихся в поле зрения человека, желательна не более 1000—2000 кд/мг, а яркость источников, редко попадающих в поле зрения человека, не более .3000—5000 кд/м2.

Освещение должно быть равномерным и не создавать теней. Если в поле зрения человека часто меняется яркость, то наступает утомление мышц глаза, принимающих участие в адаптации (сужение и расширение зрачка) и синхронно с ней происходящей аккомодации (изменение кривизны хрусталика). Равномерной должна быть освещенность по помещению и на рабочем месте. На расстоянии 5 м пола помещения отношение наибольшей освещенности к наименьшей не должно превышать 3:1, на расстоянии 0,75 м рабочего места — не больше 2:1. Яркость двух соседних поверхностей (например, тетрадь — парта, школьная доска — стена, рана —операционное белье) не должна отличаться больше, чем 2 : 1—3 : 1. По этим и другим соображениям во многих операционных цвет окружающего рану операционного белья заменен с белого на зеленый. Из соображений равномерности освещения в производственных помещениях запрещается применять одноместное освещение. Освещенность, создаваемые общим освещением, должна быть не менее 10% величины, нормируемой при комбинированном, но не менее 50 лк при лампах накаливания и 150 лк при люминесцентных лампах.

Естественное освещение. Солнце является мощным источником света, освещенность вне помещений обычно порядка десятков тысяч люкс. В правильно устроенных жилых и больничных зданиях освещенность помещений (у внутренней стены) составляет от 0,5% до 2,5% от наружной, следовательно летом она достигает нескольких сот люкс. Достоинством естественного освещения является, кроме того, благоприятный спектральный состав.

Для хорошего дневного освещения площадь окон должна соответствовать площади помещений. Поэтому распространенным способом оценки естественного освещения помещений является геометрический, при котором вычисляют так называемый световой коэффициент, т. е. отношение застекленной площади окон к площади пола. Чем больше величина светового коэффициента, тем лучше освещение.

Однако световой коэффициент дает только ориентировочное представление о дневном освещении, поскольку оно зависит еще от светового климата местности, глубины комнаты, величины видимой через окна части небосвода, окраски стен, расположения окон и ориентации их по сторонам света. Эти условия надо дополнительно учитывать при оценке естественного освещения жилища геометрическим методом.

Более совершенным является светотехнический метод. При этом методе определяют коэффициент естественной освещенности — освещенность (в лк) точки, находящейся внутри помещения в 1 м от стены, противоположной окну, Ео — освещенность (в лк) точки, расположенной вне помещения, при условии ее освещения рассеянным светом (сплошная облачность) всего небосвода. Таким образом, КЕО определяется как отношение освещенности внутри помещения к одновременной освещенности вне помещения, выраженное в процентах.

Для жилых помещений КЕО должен быть не менее 0,5%, для больничных палат— не менее 1%, для школьных классов— не менее 1,5%, для операционных — не менее 2,5%.

Искусственное освещение. Основными источниками искусственного освещения являются лампы накаливания и газоразрядные люминесцентные.

Лампа накаливания — удобный и безотказный источник света. Ее недостатком является небольшая светоотдача; на 1 Вт затраченной электроэнергии можно получить 10—20 лм. Спектр ее излучения отличается от спектра белого дневного света меньшим содержанием синего и фиолетового излучений и большим — красного и желтого. Поэтому в психофизиологическом отношении излучение приятное, теплое. В отношении зрительной работы свет лампы накаливания уступает дневному лишь при необходимости рассматривания очень мелких деталей. Он непригоден в тех случаях, когда требуется хорошее цветоразличение. .Поскольку поверхность нити накала ничтожно мала, яркость ламп накаливания значительно превышает ту, которая слепит. Для борьбы с яркостью применяют защищающую от ослепляющего действия прямых лучей света осветительную арматуру и подвешивают светильники вне поля зрения людей.

Различают осветительную арматуру прямого света, отраженного, полуотраженного и рассеянного. Арматура прямого света направляет свыше 90% света лампы на освещаемое место, обеспечивая его высокую освещенность. В то же время создается значительный контраст между освещенными и неосвещенными участками помещения. Образуются резкие тени, и не исключено ослепляющее действие. Эта арматура применяется для освещения вспомогательных помещений и санитарных узлов.

Арматура отраженного света характеризуется тем, что лучи от лампы направляются на потолок и на верхнюю часть стен. Отсюда они отражаются и равномерно, без образования теней, распределяются по помещению, освещая его мягким рассеянным светом. Этот вид арматуры создает наиболее приемлемое с гигиенической точки зрения освещение, но оно не экономично, так как при этом теряется свыше 50% света. Поэтому для освещения жилищ, классов, палат часто применяют более экономную арматуру полуотраженного и рассеянного света. При этом часть лучей освещает помещение, пройдя через молочное или матовое стекло, а часть – после отражения от потолка и стен. Подобная арматура создает удовлетворительные условия освещения, она не слепит глаза и при ней не образуется резких теней.

Люминесцентная лампа представляет собой трубку из обычного стекла, внутренняя поверхность которой покрыта люминофором. Трубка заполнена парами ртути, с обеих концов ее впаяны электроды. При включении лампы в электрическую сеть между электродами возникает электрически ток («газовый разряд»), генерирующий ультрафиолетовое излучение. Под воздействием ультрафиолетовых лучей начинает светиться люминофор. Путем подбора люминофоров изготавливают люминесцентные лампы с различным спектром видимого излучения. Наиболее часто применяют лампы дневного света (ЛД), лампы белого света (ЛБ) и тепло-белого света (ЛТБ). Спектр излучения лампы ЛД приближается к спектру естественного освещения помещений северной ориентации. При чем глаза утомляются наименьше даже при рассматривании деталей небольшого размера. Лампа ЛД незаменима в помещениях, где требуется правильное цветоразличение. Недостатком лампы является то, что кожа лица людей выглядит при этом свете, богатом голубыми лучами, нездоровой, цианотичной, из-за чего эти светильники не применяют в больницах, школьных классах и ряде подобных помещений. По сравнению с лампами ЛД спектр ламп ЛБ богаче желтыми лучами. При освещении этими лампами сохраняется высокая работоспособность глаза и лучше выглядит цвет кожи лица. Поэтому лампы ЛБ применяют в школах, аудиториях, жилищах, палатах - больниц и т. п. Спектр ламп ЛТБ богаче желтыми и розовыми лучами, что несколько, снижает работоспособность глаза, но значительно оживляет цвет кожи лица. Эти лампы применяют для освещения вокзалов, вестибюлей кинотеатров, помещений метро и т. п. Разнообразие спектра является одним из гигиенических преимуществ этих ламп. Светоотдача люминесцентных ламп в 3—4 раза больше ламп накаливания (с 1 Вт 30—80 лм), поэтому они экономичней. Яркость люминесцентных ламп 4000— 8000 кд/м2, т. е. выше допустимой. Поэтому и их применяют с защитной арматурой. При многочисленных сравнительных испытаниях с лампами накаливания на производстве, в школах, аудиториях объективные показатели, характеризующие состояние нервной системы, утомление глаза, работоспособность, почти всегда свидетельствовали о гигиеническом преимуществе люминесцентных ламп. Однако для этого требуется квалифицированное применение их. Необходим правильный выбор ламп по спектру в зависимости от назначения помещения. Если при люминесцентных лампах освещенность ниже 75—150 лк, то наблюдается «сумеречный эффект», т. е. освещенность воспринимается как недостаточная даже при рассматривании крупных деталей. Поэтому при люминесцентных лампах освещенность должна быть не ниже 75—150 лк. Кроме того, при рассматривании движущегося или вращающегося предмета при люминесцентном освещении может возникать «стробоскопический эффект», заключающийся в появлении множественных контуров рассматриваемого предмета. Для устранения стробоскопического эффекта люминесцентные лампы включают в разные фазы или применяют специальные схемы со сдвигом фаз. При неисправности дросселей люминесцентные лампы излучают пульсирующий свет или шумят.


Пред. статья След. статья
<