Фильтрационные пылеуловители

Похожие материалы

Фильтрационные пылеуловители. В этих устройствах газовый поток проходит через пористый материал различной плотности и толщины, в котором задерживается основная часть пыли. Фильтрационные устройства в зависимости от фильтрующих материалов разделяют на 4 группы:

1) с гибкими пористыми перегородками из природных, синтетических и минеральных волокон, из тканевых, нетканевых волокнистых материалов (войлока, картона, губчатой резины, пенополиуретана, металлотканей). В последние годы натуральные ткани (шерсть, хлопок) заменяют на синтетические, химически, термически, механически стойкие к воздействию микроорганизмов, с меньшей влагоемкостью (ровил из поливинилхлорида, крилор из полиакрил-нитрила, тергаль из полиэфирной смолы), а также используют стекловолокно, обработанное силиконом, которое выдерживает температуру 300 °С;

2) с полужесткими перегородками (из стружки, сеток);

3) с жесткими перегородками (из керамики, пластмасс, прессованного порошка, металла);

4) с зернистыми слоями (из кокса, гравия, кварцевого песка).

Фильтрующий эффект пористого материала состоит в улавливании частиц, диаметр которых превышает размер отверстий (пор) материала. При этом более крупные частицы пыли располагаются поперек этих отверстий, образуя сплошной слой пыли, который задерживает тонкую пыль. Чем меньше диаметр пор, тем эффективнее улавливание аэрозолей. Частицы, достигая поверхности материала, оседают под действием сил Ван-Дер-Ваальса, электростатического притяжения. На практике широко используют рукавные фильтры. Рукавный фильтр запатентован в 1886 г. Бетом. Поэтому его еще называют бета-фильтром (рис. 93). Тканевые фильтры изготавливают в форме цилиндрических труб (рукавов), расположенных параллельно в несколько рядов, что обеспечивает большую площадь поверхности. Вентилятор через входной газоход нагнетает газ в камеру, затем он проходит через тканевые рукава, нижние концы которых закреплены хомутами на патрубках распределительной решетки. Пыль оседает на внутренней поверхности рукава, а очищенный газ проходит через поры ткани и выводится в атмосферу.

Рукавные фильтры очищают газ от тонкодисперсной пыли, т. е. от частиц диаметром 0,001—0,5 мкм. Частицы диаметром более 1 мкм задерживаются в основном путем соударений и прямого захвата, в то время как частицы диаметром 0,001—1 мкм улавливаются вследствие диффузии и электростатического взаимодействия. После образования достаточно толстого слоя пыли с перепадом давления 40—70 мм вод. ст. эффективность очистки ГВС возрастает до 99%. Когда перепад давления достигает 120—150 мм вод. ст., фильтр необходимо очищать. Это достигается механической вибрацией или встряхиванием, обратным продуванием пульсирующими потоками, обратным потоком воздуха, звуковыми волнами. Тканевые фильтры рекомендуют применять в таких случаях: 1) когда необходима высокая эффективность улавливания пыли; 2) когда пыль является ценным продуктом, который необходимо собрать сухим; 3) когда температура газа выше чем его точка росы; 4) когда объемы ГВС небольшие; 5) в цветной металлургии, цементной, мукомольной промышленности. Недостатки рукавных фильтров: 1) для их размещения необходимы значительные производственные площади; 2) невозможность работать с гигроскопичными материалами.

Фильтры с полужесткими пористыми перегородками состоят из ячеек-кассет, между стенками которых расположен слой стекловолокна, шлаковаты, металлической стружки, насыщенной маслом. Собранные в секции кассеты установлены перпендикулярно к газовому потоку или под углом к нему (рис. 94).

Эффективность очистки при использовании таких фильтров составляет 99%. Их применяют для улавливания пылевых частиц всех размеров, при разных объемах выбросов и концентрации пыли на производстве технического углерода, пестицидов, красителей, сталелитейном, цементном, во время измельчения полевого шпата, графита.

Электрофильтры впервые были применены в 1903 г. Принцип очистки ГВС в электрофильтрах состоит в следующем. Если напряженность электрического поля между электродами превышает критическую величину, которая равна 30 kB/см, то молекулы воздуха ионизируются у негативно заряженного коронирующего электрода и приобретают отрицательный заряд. Во время движения негативно заряженные ионы воздуха встречают пылинки и передают им свой заряд. В свою очередь пылинки направляются к положительно заряженным осадительным электродам, достигают их поверхности и теряют свой заряд. Слой образовавшейся пыли удаляется при помощи вибрации и поступает в бункер. Очищенный газ через верхний конфузор поступает в дымовую трубу. Электрофильтры могут быть с трубчатыми (рис. 95, а) или пластинчатыми (рис. 95, б) электродами. Электрофильтр с трубчатыми электродами представляет собой камеру, в которой расположены осадительные и коронирующие электроды. Осадительные электроды — это трубки из графита, стали или пластмассы диаметром 15—30 см и длиной 3—4 м, расположенные параллельно, заземленные и соединенные с положительным полюсом выпрямителя. По оси труб натянуты коронирующие электроды из нихромовой или фехралевой проволоки диаметром 1,5—2 мм, подвешенные к раме и соединенные с отрицательным полюсом.

Электрофильтр с пластинчатыми электродами — это камера, в которой между осадительными пластинами высотой 10—12 м и шириной 8—10 м подвешены коронирующие электроды. Ионизирующие электроды натягиваются в центре между осадительными электродами, а газовый поток движется параллельно к осадительным электродам. Эффективность очистки ГВС от частиц пыли диаметром 0,05—200 мкм составляет 98—99,99%. Осевшую пыль удаляют с осадительных электродов путем встряхивания или вибрации. Встряхивание применяют в том случае, если толщина слоя пыли достигает 3—6 мм.


Пред. статья След. статья
<