Химические показатели качества питьевой воды

Изменение химического состава воды является причиной заболеваний неинфекционной природы.

Причины изменения химического состава воды:

  • 1) промышленная и сельскохозяйственная деятельность человека - поступление производственных и бытовых сточных вод, атмосферных осадков, содержащих вредные вещества.
  • 2) очистка питьевой воды - применение химических приемов обработки воды и содержание остаточных количеств реагентов в воде.

Показатели:

  • 1) сухой остаток
  • 2) жесткость
  • 3) хлориды
  • 4) сульфаты
  • 5) нитраты и нитриты
  • 6) значение рН
  • 7) микроэлементы

Сухой остаток.

Сухой остаток-это общее содержание растворенных твердых веществ в воде, он дает представление о степени минерализации воды. Основными ионами, определяющими сухой остаток,, являются карбонаты, бикарбонаты, хлориды, сульфаты, нитраты, натрий, калий, кальций, магний. Данный показатель влияет на другие показатели качества питьевой воды, такие как привкус, жесткость, коррозирующие свойства и тенденция к накипеобразованию.

Воду с сухим остатком свыше 1000 мг/л называют минерализованной, до 1000 мг/л – пресной. Воду, содержащую до 50 – 100 мг/л, считают слабоминерализованной (дистиллированная) ,100 –300 мг/л–удовлетворительно минерализованной, 300 – 500 мг/л – оптимальной минерализации и 500 –1000 мг/л – повышенно минерализованной. Минерализованной водой является морская, минеральная, пресной – речная, дождевая, вода ледников.

Значение сухого остатка:

  • 1) Вода с повышенным содержанием минеральных солей непригодна для питья, так как имеет соленый или горько - солёный вкус, а её употребление в зависимости от состава солей приводит к неблагоприятным физиологическим изменениям в организме:
    • а) способствует перегреву в жаркую погоду,
    • б) ведет к нарушению утоления жажды,
    • в) изменяет водно-солевой обмен за счёт увеличения гидрофильности тканей,
    • г) усиливает моторную и секреторную желудка и кишечника.
  • 2) Слабоминерализованная вода неприятна на вкус, длительное её употребление может привести к нарушению водно-солевого обмена (уменьшение содержания хлоридов в тканях). Такая вода, как правило, содержит мало микроэлементов.

Жесткость.

Общая жесткость воды обусловлена преимущественно присутствием в воде кальция и магния, которые находятся в виде гидрокарбонатов, карбонатов, хлоридов, сульфатов и других соединений; имеют также значение ионы стронция, железа, бария, марганца.

Виды жесткости:

  • 1. Устранимая – величина, на которую уменьшается общая жесткость воды при кипячении её в течении 1часа. Обусловлена гидрокарбонатами кальция и магния, которые разрушаются и выпадают в виде карбонатов в осадок (накипь).
  • 2. Карбонатная – это жесткость, обусловленная бикарбонатами и малорастворимыми карбонатами. Устранимая жесткость приблизительно равна карбонатной, но когда в воде много гидрокарбонатов натрия и кальция, карбонатная жесткость значительно превышает устранимую.
  • 3. Постоянная – это жесткость, которая остается после кипячения и обусловлена хлоридами, карбонатами, и сульфатами кальция и магния.

Воду с общей жесткостью до 3,5 мг-экв/л называют мягкой, 3,5-7 –средней жесткости, 7-10 –жесткой, свыше-10 –очень жесткой.

Основными природными источниками жесткости воды являются осадочные породы, фильтрация и сток с почвы. Жесткая вода образуется в районах с плотным пахотным слоем и известковыми образованиями. Для подземных вод характерна большая жесткость, чем для поверхностных. Подземные воды, богатые карбоновыми кислотами и растворенным кислородом, обладают высокой растворяющей способностью по отношению к почвам и породам, содержащим минералы кальцита, гипса и доломита.

Основными промышленными источниками жесткости являются стоки предприятий, производящих неорганические химические вещества, и горнодобывающая промышленность. Оксид кальция используется в строительной промышленности, производстве бумажной массы и бумаги, рафинировании сахара, в очистке нефти, дублении и как реагент для очистки воды и сточных вод. Сплавы магния применяются в литейном и штамповочном производстве, бытовых продуктах. Соли магния используются в производстве металлического магния, удобрений, керамики, взрывчатых веществ, медикаментов.

Значение жесткой воды:

  • ухудшаются органолептические свойства - вода имеет неприятный вкус;
  • нарушается всасывание жиров в кишечнике в результате образования кальциево-магнезиальных нерастворимых мыл при омылении жиров;
  • у лиц с чувствительной кожей способствует появлению дерматитов в связи с тем, что кальциево-магнезиальные мыла обладают раздражающим действием
  • в хозяйственно-бытовом аспекте: увеличивается расход моющих средств, образуется накипь при кипячении, волосы после мытья становятся жесткими, ткани одежды теряют мягкость и гибкость, ухудшается разваривание мяса и овощей с потерей витаминов в результате связывания их в неусвояемые комплексы,
  • имеются данные, что употребление слишком жесткой воды может приводить к увеличению частоты мочекаменной болезни; хотя есть сведения о том, что жесткость может служить защитой от болезней;
  • при резком переходе от пользования жесткой водой к мягкой и наоборот могут у людей наблюдаться диспептические явления;
  • портит вид, вкус и качество чая, который является важнейшим напитком у населения, стимулирующим желудочную секрецию и утоляющим жажду;

Имеются данные о том, что употребление мягкой воды может явиться причиной сердечно-сосудистых заболеваний.

Хлориды.

Хлориды могут быть минерального и органического происхождения. Присутствие хлоридов в природных водах может быть связано с растворением отложений солей, загрязнением, обусловливаемым нанесением соли на дороги с целью борьбы со снегом льдом, сбросом стоков предприятиями химической промышленности, эксплуатацией нефтяных скважин, сбросом сточных вод, ирригационным дренажом, загрязнением в результате вымывания твердых отбросов и вторжения морской воды в прибрежные районы. Каждый из этих источников может вызвать загрязнение поверхностных и подземных вод. Высокая растворимость хлоридов объясняет широкое распространение их во всех природных водах.

Влияние на здоровье. Хлориды - наиболее распространенные в организме человека анионы и играют большую роль в осмотической активности внеклеточной жидкости; 88% хлоридов в организме находятся во внеклеточном пространстве. У здоровых людей происходит почти полное всасывание хлоридов.

Значение хлоридов:

  • ухудшаются органолептические свойства – вода приобретает солоноватый вкус и в связи с этим ограничивается водопотребление;
  • влияет на водно – солевой обмен; повышается уровень хлоридов в крови, что приводит к снижению диуреза и перераспределению хлоридов в органах и тканях;
  • вызывают угнетение желудочной секреции, в результате чего нарушается процесс переваривания пищи;
  • имеются данные о том, что хлориды оказывают гипертензивный эффект и у людей, страдающих гипертонической болезнью употребление воды с повышенным содержанием хлоридов может вызвать утяжеление течения заболевания;
  • являются показателем загрязнения подземных и поверхностных водоисточников, так как хлориды содержаться в сточных водах и физиологических выделениях человека.

Сульфаты.

Сульфаты поступают в водную среду со сточными водами многих отраслей промышленности. Атмосферная двуокись серы (SO2) , образующаяся при сгорании топлива и выделяющаяся в процессах обжига в металлургии, может вносить вклад в содержание сульфатов в поверхностных водах. Трехокись серы (SO3) , образующаяся при окислении двуокиси серы, в сочетании с парами воды образуют серную кислоту, которая выпадает в виде «кислого дождя» или снега. Большинство сульфатов растворимы в воде.

С сульфатом алюминия, который используется в качестве флоккулянта при очистке воды, в очищенную воду может дополнительно попадать 20-50 мг/л сульфатов. Сульфаты не удаляются из воды обычными методами очистки. Концентрация в большинстве пресных вод очень низкая.

Значение сульфатов:

  • сульфаты плохо всасываются из кишечника человека. Они медленно проникают через клеточные мембраны и быстро выводятся через почки. Сульфат магния действует как слабительное в концентрации выше 100 мг/л, приводя к очищению ЖКТ. Такой эффект возникает у людей, впервые использующих воду с высоким содержанием сульфатов (при переезде на новое место жительства, где употребляют сульфатную воду). Со временем человек адаптируется к такой концентрации сульфатов в воде.
  • ограничивается водопотребление, так как сульфаты придают воде горько-соленый вкус в концентрации свыше 500 мг/л.
  • неблагоприятно влияют на желудочную секрецию, приводя к нарушению процессов переваривания и всасывания пищи.
  • являются показателем загрязнения поверхностных вод производственными сточными водами и подземных вод водами вышележащих водоносных горизонтов.

Нитраты, нитриты.

Аммиак является начальным продуктом разложения органических азотосодержащих веществ. Поэтому наличие аммиака в воде может расцениваться как показатель опасного в эпидемическом отношении свежего загрязнения воды органическими веществами животного происхождения. В некоторых случаях наличие аммиака не указывает на недоброкачественность воды. Например: в глубоких подземных водах аммиак образуется за счет восстановления нитратов при отсутствии кислорода или повышенное содержание аммиака в болотистых и торфяных водах (аммиак растительного происхождения).

Соли азотистой кислоты (нитриты) представляют собой продукты неполного окисления аммиака под влиянием микроорганизмов в процессе нитрификации. Наличие нитритов свидетельствует о возможном загрязнении воды органическими веществами, однако нитриты указывают на известную давность загрязнения.

Соли азотной кислоты (нитраты) – конечные продукты минерализации органических веществ бактериями, присутствующими в почве и в воде с достаточным содержанием кислорода. Присутствие в воде нитратов без аммиака и нитритов указывает на завершение процесса минерализации.

Одновременное содержание в воде аммиака, нитритов и нитратов свидетельствует о незавершенности этого процесса и продолжающемся, опасном в эпидемическом отношении загрязнении воды. Однако повышенное содержание нитратов может иметь минеральное происхождение. Нитраты используют в качестве удобрений (селитра), во взрывчатых веществах, в химическом производстве и в качестве консервантов пищевых продуктов. Некоторые нитраты являются результатом фиксации в почве атмосферного азота (бактериальный синтез). Нитриты используют в качестве консервантов пищевых продуктов. Некоторые нитраты и нитриты образуются при вымывании дождем окислов азота, которые являются результатом разряда молнии или поступают из антропогенных источников.

Нитраты и нитриты широко распространены в окружающей среде, они обнаруживаются в большинстве пищевых продуктов, в атмосфере и во многих водных источниках. Поступлению этих ионов в воду способствует использование удобрений, гниение растительного и животного материала, бытовые стоки, удаление в почву осадка сточных вод, промышленные сбросы, выымывание из мест захоронения отходов и вымывание из атмосферы. В природных чистых водах нитратов, как правило, немного. Однако в грунтовых водах в пределах населенных пунктов, животноводческих ферм и в других местах, где почва длительно и массивно загрязняется, содержание нитратов может быть высоким.

Поскольку ни один из обычно используемых методов очистки и обеззараживания воды не изменяет значительно уровня содержания нитратов, и поскольку концентрация нитратов заметно не изменяется в системе распределения воды, уровни содержания в водопроводной воде часто полностью аналогичны таковым для водных источников. Содержание нитритов в водопроводной воде ниже, чем в водных источниках, что вызвано их окислением в процессе очистки воды, особенно при хлорировании.

Метаболизм. Нитраты и нитриты легко поглощаются организмом. Нитраты поглощаются в верхних отделах тонкого кишечника, концентрируются преимущественно в слюне через посредство слюнных желез, выводятся через почки. Нитрат может легко превращаться в нитрит в результате бактериального восстановления. Восстановление нитратов в нитриты происходит во всем организме, включая желудок. Это превращение

зависит от значения рН. У грудных детей, у которых кислотность в желудке в норме очень низкая, образуется большое количество нитрита. У взрослых кислотность в желудке характеризуется значением рН 1-5 и в меньшей степени происходит превращение нитрата в нитриты. Нитрит может окислять гемоглобин в метгемоглобин. При определенных условия нитриты могут реагировать в организме человека с вторичными и третичными аминами и амидами (пища) с образованием нитрозаминов, некоторые из которых считаются канцерогенами.

Значение нитратов, нитритов:

· вызывают развитие «водно-нитратной метгемоглобинемии» за счет окисления нитритами гемоглобина в метгемоглобин. В основном данное заболевание возникает у детей. Чувствительность грудных детей к действию нитратов относили за счет их высокого поступления в организм относительно массы тела, присутствием нитрат редуцирующих бактерий в верхних отделах ЖКТ и более легким окислением эмбрионального гемоглобина. Кроме того, повышенная чувствительность наблюдается у грудных детей, страдающих нарушениями функции ЖКТ, при которых увеличивается количество бактерий, способных превращать нитраты в нитриты. Использование искусственных смесей для вскармливания детей тоже рассматривается как причина увеличения заболеваемости, так как вода, используемая для приготовления смеси может содержать повышенное количество нитратов. У грудных детей в желудке значение рН, близкое к нейтральному, способствует бактериальному росту в желудке и в верхних отделах кишечника. У детей отмечается недостаточность по двум специфическим ферментам, которые осуществляют обратное превращение метгемоглобина в гемоглобин. Длительное кипячение может усугублять проблему вследствие увеличения количества нитратов при испарении воды. Чаще причиной заболевания являлось использование в качестве источника воды частных колодцев с микробиологическим загрязнением (в них отсутствуют водоросли, активно потребляющие нитраты). Заболевание характеризуется развитием одышки, цианоза, тахикардии, судорог. У детей старше 1 года и взрослых заболевание в форме острого токсического цианоза не наблюдается, но возрастает содержание метгемоглобина в крови, что ухудшает транспорт кислорода к тканям – это проявляется слабостью, бледностью кожных покровов, повышенной утомляемостью.

· вызывают образование нитрозаминов, некоторые из них могут быть канцерогенами. Образование этих веществ происходит во рту или где-либо ещё в организме, где кислотность относительно низкая.

· являются показателем загрязнения воды органическими веществами.

Значение рН (активная реакция).

Кислыми являются болотистые воды, содержащие гуминовые вещества, щелочными – подземные воды, богатые бикарбонатами.

Значение:

  • определяет природные свойства воды;
  • является показателем загрязнения открытых водоемов при спуске в них кислых или щелочных производственных сточных вод;
  • значение рН тесно связано с другими показателями качества питьевой воды. Рост железобактерий в большой степени зависит от рН. Они образуют в качестве конечного продукта метаболизма гидрат окиси железа, который придает красный цвет воде. При высоких значениях рН вода приобретает горький вкус.
  • эффективность процессов коагуляции и обеззараживания зависит от рН. Обеззараживающее действие хлора в воде ниже при высоких значениях рН; это связано со снижением концентрации хлорноватистой кислоты.

Микроэлементы.

В природных водах встречаются различные микроэлементы: бром, бор, медь, цинк, марганец, кобальт, молибден, свинец, мышьяк, бериллий, фтор, йод и др.

Фтор.

Основным источником поступления фтора в организм человека является питьевая вода. Источником фтора в воде являются почва и подстилающие её породы, где находятся растворимые фторсодержащие минеральные соединения. Вода открытых водоемов может загрязняться фторсодержащими соединениями при выпуске в них промышленных сточных вод. В воде открытых водоемов содержится пониженное количество фтора. Высокие концентрации фтора чаще встречаются в водах артезианских скважин.

Фтор, потребляемый с водой, почти полностью всасывается, удерживается в скелете и в небольшом количестве в зубных тканях. При концентрации фтора выше 1,5 мг/л у людей, пьющих такую воду, развивается флюороз зубов, свыше 5 мг/л возможен флюороз скелета. Флюороз зубов характеризуется появлением на эмали зубов фарфороподобных или пигментированных в желтый или коричневый цвет пятен или эрозий, а также повышенной стираемостью зубов. При снижении концентрации фтора ниже 1 мг/л у населения возрастает заболеваемость кариесом, так как он снижает растворимость эмали при условиях повышенной кислотности среды. В высоких дозах фтор остро токсичен для человека: развивается геморрагический гастроэнтерит, острый токсический нефрит и поражение печени и сердечной мышцы.

Железо.

В поверхностных водах железо присутствует в трехвалентном состоянии, хотя в восстановительных условиях в подземных водах может содержаться и двухвалентное железо. Присутствие железа в природных водах связано с растворением горных пород и минералов, дренажом кислых шахтных вод, фильтрацией со свалок, сбросом сточных вод и стоками предприятий металлургической промышленности.

Значение железа:

  • соли двухвалентного железа нестабильны и выпадают в осадок в виде нерастворимого гидроксида железа, который оседает в виде налёта ржавого цвета. Железо придает воде мутность, желто-бурую окраску. Такая вода неприятна на вкус (имеет горьковатый металлический вкус), окрашивает бельё и водопроводимую арматуру.
  • осадок железа снижает ток воды и ускоряет рост железобактерий. Они получают энергию при окислении двухвалентного железа в трехвалентное, и в ходе этого процесса откладывается ил, покрывающий трубопроводы.

Медь.

Медь часто обнаруживается в поверхностных водах, она придает воде неприятный вяжущий привкус и окраску. Присутствие меди в воде не представляет опасности для здоровья, хотя может препятствовать использованию воды в бытовых целях. Медь увеличивает коррозию алюминиевой и цинковой посуды и арматуры.

Марганец.

Марганец, присутствующий в поверхностных водах, встречается в растворимой и во взвешенной формой. Более высокие концентрации марганца обычно связаны с промышленным загрязнением. Интоксикация марганцем, поступающим с питьевой водой, не описана. Марганец придает нежелательный привкус напиткам и окрашивает арматуру и белье при стирке. Если соединения марганца в растворе подвергаются окислению, марганец выпадает в осадок, вызывая проблемы накипеобразования.

Цинк.

Карбонаты, оксиды и сульфиды цинка плохо растворимы в воде, хотя высокорастворимые хлоридные и сульфатные соли склонны к гидролизу с образованием гидроксида и карбоната цинка. В результате этого концентрация цинка в природных водах обычно низкая. Концентрация цинка в водопроводной воде выше вследствие вымывания его из оцинкованных труб, латуни и цинксодержащей арматуры. Вследствие низкой токсичности цинка и эффективных гомеостатических механизмов регуляции опасность для человека хронической токсичности цинка, поступающего с питьевой водой и рационом, маловероятна. Цинк придает воде нежелательный вяжущий привкус, кроме того, может появляться опалесценция и образовываться маслянистая пленка при кипячении.

Алюминий.

Алюминий поступает в воду в результате сброса промышленных сточных вод, эрозии, вымывании вещества из минералов и почвы, загрязнения атмосферной пылью и выпадения осадков. Соли алюминия широко используются при очистке воды для устранения её цветности и мутности. Соли алюминия, поступившие вовнутрь, не вызывают у человека никаких вредных эффектов. В норме они не всасываются из пищи и воды, а образуют комплексы с фосфатами и выводятся с фекалиями. Алюминий может ухудшать органолептические свойства воды - появляется неприятный, вяжущий вкус.

Хром.

Питьевая вода обычно содержит хром в очень низких концентрациях. Загрязнение воды происходит в результате применения хрома в хозяйственной деятельности человека и в результате сброса стоков, содержащих соединения хрома. Неблагоприятные для человека эффекты присутствующего в воде хрома связаны с шестивалентным хромом. Хром в пределах 10 мг/кг массы тела вызывает у человека некроз печени, нефрит и смерть; более низкие дозы приводят к раздражению слизистой оболочки ЖКТ. Имеются данные о том, что хром может вызывать развитие злокачественных новообразований.

Свинец.

Наличие свинца в поверхностных водах обусловлено сбросом промышленных стоков. В питьевой воде содержание свинца относительно низкое, но при использовании свинцовых труб его концентрация может существенно увеличиваться. В литературе имеется информация о кишечном всасывании свинца из водных растворов, содержащих растворенный свинец. Свинец в высоких дозах является кумулятивным метаболическим ядом общего действия.

Ртуть.

Ртуть может присутствовать в окружающей среде в виде металла, в виде солей и в виде ртутьорганических соединений, наиболее важным является метилртуть. Метилртуть может получаться из неорганической ртути под действием микроорганизмов, обнаруживаемых в донных отложениях и в осадке сточных вод. Наличие повышенных концентраций ртути указывает на загрязнение воды. Рыбы и млекопитающие поглощают и удерживают ртуть и в районах, где вода загрязнена ртутью и где рыба составляет значительную часть рациона, поступление элемента в организм может быть значительным.

Ртуть не выполняет никакой физиологической функции в организме. Метилртуть полностью всасывается в ЖКТ. Отравление ртутью проявляется неврологическими и почечными нарушениями, гонадотоксическим и мутагенным эффектами.

Никель.

Многие соли никеля растворимы в воде, что может приводить к загрязнению воды, также может быть промышленный сброс в реки стоков, содержащих соединения никеля. Некоторое количество никеля удаляется при традиционных методах очистки воды, поэтому содержание никеля в очищенной воде ниже, чем в неочищенной. Никель является эссенциальным элементом, поглощение из ЖКТ низкое. Никель относительно нетоксичен. Считается, что те уровни никеля, которые обнаруживаются в пище и воде, не представляют серьезной опасности для здоровья.

Водные патогенные бактерии.

Фекальное загрязнение питьевой воды может обусловить поступление в воду различных кишечных патогенных организмов (бактериальных, вирусных и др.), причем их присутствие связано с микробными болезнями и носителями, имеющимися в данный момент среди населения изучаемого района. Кишечные патогенные бактерии широко распространены во всем мире. Среди известных, встречающихся в загрязненной воде, штаммы Salmonella, Shigella, Escherichia coli, Vibrio cholerae, Yersinia enterocolitica, Camhylobacter fetus. Эти организмы могут вызывать заболевания, варирующие по степени тяжести от легкой формы гастроэнтеритов до тяжелых, а иногда летальных форм дизентерии, холеры и брюшного тифа.

Другие организмы, естественно присутствующие в окружающей среде и не считающиеся патогенными агентами, могут вызывать иногда оппортунистические заболевания (т. е. инфекции условно патогенными организмами). Такие микроорганизмы при их присутствии в питьевой воде могут служить причиной инфекционных болезней, главным образом у лиц с нарушением местных или общих естественных иммунозащитных механизмов, что наиболее вероятно в случае очень пожилых людей, детей и больных госпитализированных, например по поводу ожогов или при необходимости в иммуносупрессивной терапии. Питьевая вода, используемая такими больными для питья и умывания, если она содержит избыточное количества микроорганизмов таких как Pseudomonas, Flavobacterium, Acinetobacter, Klebsiella, Serratia может обусловить возникновение самых различных инфекций, в том числе инфекционных поражений кожи и слизистых оболочек глаза, уха и носоглотки

Значимость водного пути распространения кишечных бактериальных инфекций значительно варъируется в зависимости от заболевания и местных условий.

Обоснование использования индикаторных микроорганизмов.

Несмотря на то, что в настоящее время можно установить факт присутствия в воде многих патогенных агентов, методы их выделения и количественного определения нередко довольно сложны и длительны. Поэтому с практической точки зрения нецелесообразно проводить мониторинг каждого возможного патогенного микроба, являющегося следствием загрязнения. Более логичным подходом является выявление микроорганизмов, обычно присутствующих в фекалиях человека и других теплокровных животных, в качестве индикаторов фекального загрязнения, а также показателей эффективности процессов очистки и обеззараживания воды. Выявление таких микроорганизмов указывает на присутствие фекалий, а, следовательно, на возможное присутствие кишечных патогенных агентов. Таким образом, поиск таких микроорганизмов - индикаторов фекального загрязнения- позволяет получить средства контроля качества воды. 

Микроорганизмы – индикаторы фекального загрязнения.

Использование типичных кишечных микроорганизмов в качестве индикаторов фекального загрязнения является общепризнанным. В идеале обнаружение таких индикаторных бактерий должно означать присутствие всех сопутствующих такому загрязнению патогенных агентов. Индикаторные микроорганизмы всегда присутствуют в экскрементах, но отсутствуют в других источниках. Они легко выделяются, идентифицируются и количественно определяются и не размножаются в воде. Они дольше выживают в водной среде, чем патогенные и более устойчивы к действию обеззараживающих агентов. Практически какой-либо один микроорганизм не может отвечать всем этим критериям.

Микроорганизмы, используемые в качестве бактериальных индикаторов фекального загрязнения, включает группу колиформных организмов в целом, E. Coli и колиформные организмы, которые были описаны как «фекальные колиформы», фекальные стрептококки и сульфитредуцирующие клостридии.

А) Общие колиформные микроорганизмы.

Колиформные организмы давно уже считаются удобными индикаторами качества питьевой воды, главным образом потому, что, эти микроорганизмы легко поддаются обнаружению и количественному определению в водной среде. Они характеризуются способностью ферментировать лактозу при культивировании при 35· или 37· С и включают виды E. Coli, Citrobacter, Enterobacter, Klebsiella. Они не должны присутствовать в подаваемой потребителю воде, а их присутствие свидетельствует о недостаточной очистке или вторичном загрязнении после очистки. В этом случаи тест на общие колиформы является показателем эффективности очистки воды.

Б) Фекальные (термотолерантные) колиформы

Они представляют собой колиформные организмы, способные ферментировать лактозу при 44.00 или 44.50С и включают род Eschеrichia и в меньшей степени отдельные штаммы Enterobacter, Klebsiella. Из этих микроорганизмов только E. Coli специфично фекального происхождения, причем она всегда присутствует в больших количествах в экскрементах человека, животных и птиц и редко обнаруживается в воде и почве не подвергшихся фекальному загрязнению.

В) Другие индикаторы фекального загрязнения.

Для подтверждения фекального загрязнения при отсутствии фекальных колиформ и E. coli в воде могут быть использованы другие индикаторные организмы. Эти вторичные индикаторные организмы включают фекальные стрептококки и сульфитредуцирующие клостридии, особенно C. Perfringens.

Г) Фекальные стрептококки

Присутствие фекальных стрептококков в воде обычно указывает на фекальное загрязнение. Это относится к тем стрептококкам, которые обычно присутствуют в экскрементах человека и животных, в том числе S. Faecalis, S. Fatcium, S. Durans, S. Avium, а также штаммы с промежуточными свойствами. Эти микроорганизмы редко размножаются в загрязненной воде, и они могут быть несколько болеее устойчивыми обеззараживанию, чем колиформные органищмы. 

Д) Сульфитредуцирующие клостридии.

Это анаэробы спорообразующие организмы, наиболее характерным из которых является C. Perfringes (C. Welcyii), обычно присутствуют в фекалиях, хотя в значительно меньших количествах, чем E. Coli. Споры сульфитредуцирующих выживают в водной среде дольше, чем организмы колиформной группы, они устойчивы к обеззараживанию.

Е) Простейшие.

Из всех кишечных простейших, патогенных для человека, три. Эти простейшие могут быть переданы через воду: Entamoeba Hyistolytica, Giardia spp. и Balantidium coli. Эти организмы являются этиологическими агентами соответственно амебиаза( амебная дизентерия), лямблиоза и балантидиаза и все они связаны с вспышками заболеваний, связанных с питьевой водой. Различные, обычно свободноживущие, амебы могут играть роль водных агентов, нередко вызывающих заболевания со смертельным исходом. Однако, инфекции водного происхождения, вызваные этими организмами, почти всегда больше связаны с рекреационным контактом с водой, чем с передачей через питьевую воду.

E. histolytica широко распространена во всем мире и существует в стадии трофозоидов и цист. Инфекция возникает при заглатывании цист. Человек выступает в роли резервуара инфекции. Больные дизентерией выделяют только трофозоиды, которые чувствительны к подсушиванию, колебаниям температуры и соленности и они погибают под действием желудочного сока. Поэтому более важным источником инфекции являются хронические больные и носители инфекции, которые выделяют цисты.

Giardia spp. так же широко распространена в мире и находится в стадии трофозоидов и цист. Найдена у многих видов млекопитающих и птиц. Инфекция возникает при заглатывании цист и чаще возникает у детей.

Balantidium coli представляют широко распространенные микроорганизмы. Могут быть опасны для человека.

Несмотря на то, что большинство инфекций E. Histolytica протекают бес симптомно или вызывают лишь незначительные симптомы, смертельные исходы не исключены. Клинические проявления это гастроэнтериты с симптомами легкой диареи до скоротечной дизентерии.

Балантидиаз может проявляться в виде острой дизентерии с кровавым поносом, либо протекае бессимптомно в виде носительства.


Пред. статья След. статья