Обеззараживание питьевой воды

Обеззараживание питьевой воды служит для создания надежного барьера на пути передачи водным путем возбудителей инфекционных болезней. Методы обеззараживания воды направлены на уничтожение патогенных и условно-патогенных микроорганизмов, чем обеспечивается эпидемическая безопасность воды.

Воду обеззараживают на конечном этапе очистки после осветления и обесцвечивания перед поступлением в резервуары чистой воды, которые одновременно выполняют функции контактных камер. Для обеззараживания воды применяют реагентные (химические) и безреагентные (физические) методы. Реагентные методы основаны на введении в воду сильных окислителей (хлорирование, озонирование, манганирование, обработка воды йодом), ионов тяжелых металлов и ионов серебра. К безреагентным относятся термическая обработка, ультрафиолетовое облучение, обработка ультразвуком, у-облучение, обработка током сверхвысокой частоты. Метод выбирают в зависимости от количества и качества исходной воды, методов ее предварительной очистки, требований к надежности обеззараживания, с учетом технико-экономических показателей, условий поставки реагентов, наличия транспорта, возможности автоматизации процесса.

Обеззараживание воды хлором и его соединениями. На сегодняшний день наиболее распространенным методом обеззараживания воды на водопроводных станциях остается хлорирование. Среди хлорсодержащих соединений, учитывая определенные гигиенические и технические преимущества, чаще всего используют жидкий хлор. Возможно также применение хлорной извести, кальция и натрия гипохлорита, хлора диоксида, хлораминов и др.

Впервые в практике водоподготовки хлор был применен задолго до открытия Л. Пастером микробов, доказательства Р. Кохом этиологического значения патогенных микроорганизмов в развитии инфекционных болезней, окончательного осознания Т. Эшерихом микробиологической сущности водных эпидемий и бактерицидных свойств хлора. Применяли его с целью дезодорации воды, которая имела неприятный "септический"запах. Хлор оказался очень эффективным дезодорантом и, кроме того, после обработки воды хлором у людей значительно реже диагностировали кишечные инфекции. С началом хлорирования воды во многих странах Европы прекратились эпидемии брюшного тифа и холеры. Было высказано предположение, что причиной болезней были плохой запах и вкус воды, которые эффективно устранял хлор. Лишь со временем доказали микробную этиологию водных эпидемий кишечных инфекций и признали роль хлора в качестве обеззараживающего агента.

Для хлорирования воды применяют жидкий хлор, который хранится под давлением в специальной таре (баллонах), или вещества, содержащие активный хлор.

Хлорирование воды жидким хлором. Хлор (С12) при нормальном атмосферном давлении является газом зеленовато-желтого цвета, который в 1,5—

2,5 раза тяжелее воздуха, с резким и неприятным запахом, хорошо растворяется в воде, при повышении давления легко сжижается. Атомный вес хлора — 35,453, молекулярная масса — 70,906 г/моль. Хлор может находиться в трех агрегатных состояниях: твердом, жидком и газообразном.

Хлор на водопроводные станции для обеззараживания воды доставляют жидким в баллонах под давлением. Хлорирование осуществляют при помощи хлораторов. В них готовят раствор хлора, который вводят непосредственно в трубопровод, по которому вода поступает в РЧВ. Используют хлораторы Л. А. Кульского (рис. 20), вакуумные хлораторы ЛОНИИ-100, Ж-10, ЛК-12, ХВ-11.

При подключении баллона к хлоратору жидкий хлор испаряется. Газообразный хлор очищается в баллоне и на фильтре, и после снижения его давления с помощью редуктора до 0,001— 0,02 МПа его смешивают в смесителе с водой. Из смесителя концентрированный раствор всасывается эжектором и подается в трубопровод. Хлораторы типа ЛК, конструкция которых проще, а точность ниже используют для станций больших мощностей. Эти хлораторы не требуют предварительной очистки хлора, не так точны в дозировании, но могут подавать хлорную воду на высоту 20— 30 м. После же эжектора от ЛОНИИ-100 напор составляет лишь 1—2 м. Во время растворения хлора в воде происходит его гидролиз с образованием хлоридной (соляной) и гипохлоритной (или хлорноватистой) кислот:

С12+ Н20 ^ HCl + НС10.

Степень диссоциации хлорноватистой кислоты зависит от pH воды. При pH < 5 (по Л. Кульскому) почти весь свободный хлор остается в виде неиони-зированной хлорноватистой кислоты (НСЮ). При повышении pH возрастает степень диссоциации хлорноватистой кислоты. При pH свыше 9,2 (по Л. Кульскому) почти весь свободный хлор находится в виде иона гипохлорита (СЮ-). Окислительное действие (окислительный потенциал) имеет как гипохлоритная кислота, так и гипохлорит-ион. Именно поэтому обе эти формы способны оказывать бактерицидное влияние. Их называют свободным активным хлором. Окислителем является и молекулярный хлор (С12), который также рассматривается как одна из форм свободного активного хлора.

Активным хлором называется такой, который способен при pH 4 выделять эквивалентное количество йода из водных растворов калия йодида. Различают свободный (молекулярный хлор, хлорноватистая кислота, гипохлорит-ион) и связанный (хлор, входящий в состав органических и неорганических моно - и дихлораминов) активный хлор.

Раньше считали, что именно этот атомарный кислород оказывает бактерицидное действие. Сегодня доказано, что обеззараживающий эффект жидкого хлора, а также хлорной извести, кальция и натрия гипохлоритов, двухтретиос-новной соли кальция гипохлорита обусловлен окислителями, которые образуются в воде при растворении хлорсодержащих соединений, причем прежде всего — действием гипохлоритной кислоты, а затем — гипохлоритного аниона и наконец атомарного кислорода.

Хлорирование воды гипохлоритами (солями хлорноватистой кислоты) проводят на водопроводных станциях низкой мощности. Гипохлориты также используют для длительного обеззараживания воды в шахтных колодцах при помощи керамических патронов, для обеззараживания воды в полевых условиях, в том числе с использованием тканево-угольных фильтров и др.

Для дезинфекции питьевой воды используют кальция гипохлорит Са(ОС1)2. В процессе его растворения в воде происходит гидролиз с образованием хлорноватистой кислоты и дальнейшей ее диссоциацией.

В зависимости от способа производства кальция гипохлорит может содержать от 57—60% до 75—85% активного хлора. Вместе с чистым гипохлоритом для обеззараживания воды используют смесь кальция гипохлорита с другими солями (NaCl, СаС12). Такие смеси содержат до 60—75% чистого гипохлорита.

На станциях с расходом активного хлора до 50 кг/сут можно использовать для обеззараживания воды натрия гипохлорит (NaCIO • 5Н20). Этот кристаллогидрат получают из раствора натрия хлорида (NaCl) электролитическим способом.

Натрия хлорид в воде диссоциирует с образованием катиона натрия и аниона хлора:

NaCl ^ Na+ + СГ

Во время электролиза на аноде происходит разряжение ионов хлора и образуется молекулярный хлор:

2СГ -» С12 + 2е.

Образовавшийся хлор растворяется в электролите:

С12+Н2О^НС1 + НСЮ,

С12+ОН-^СІ+НСЮ.

На катоде происходит разряд молекул воды:

Н20 + е -> ОН - + Н+.

Атомы водорода после рекомбинации в молекулярный водород выделяются из раствора в виде газа. Гидроксильные анионы ОН", оставшиеся в воде, реагируют с катионами натрия Na+, вследствие чего образуется NaOH. Натрия гидроксид взаимодействует с хлорноватистой кислотой с образованием натрия гипохлорита:

NaOH + НС10 -> NaOCI + Н20.

Натрия гипохлорит в значительной мере диссоциирует с образованием СЮ", который обладает высокой антимикробной активностью:

NaCIO ^ Na+ + СЮ",

сю - + н+;^нсю.

Электролизерные установки разделяют на проточные и порционные. В их состав входят электролизеры, разнотипные баки. Принципиальная схема порционной установки изображена на рис. 22. Раствор натрия хлорида 10% концентрации подают в бак постоянного уровня, откуда он вытекает с постоянным расходом. После заполнения бачка-дозатора срабатывает сифон и сливает определенный объем раствора в электролизер. Под воздействием электрического тока в электролизере образуется натрия гипохлорит. Новые порции раствора соли выталкивают натрия гипохлорит в расходный бак, из которого он дозируется насосом-дозатором. Бак-накопитель должен вмещать объем натрия гипохлорита не менее чем на 12 ч.

Преимуществом получения натрия гипохлорита электролитическим методом в месте употребления является то, что отпадает необходимость в транспортировке и хранении токсического сжиженного хлора. Среди недостатков можно назвать значительные энергозатраты.


Пред. статья След. статья